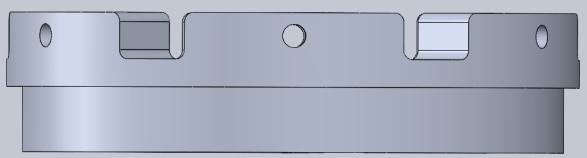
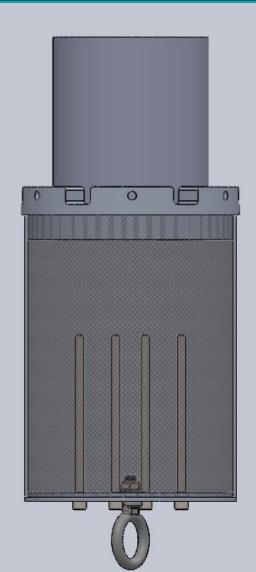
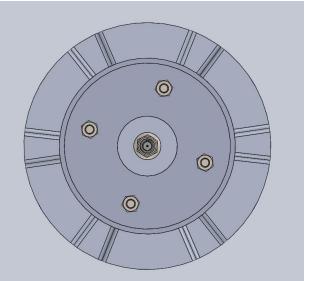

NRG Rocket

Bob Nimcheski Emanuel Salinas Lee Freytes Colón Thomas Sasser Adriana Fisk Stonn Billy

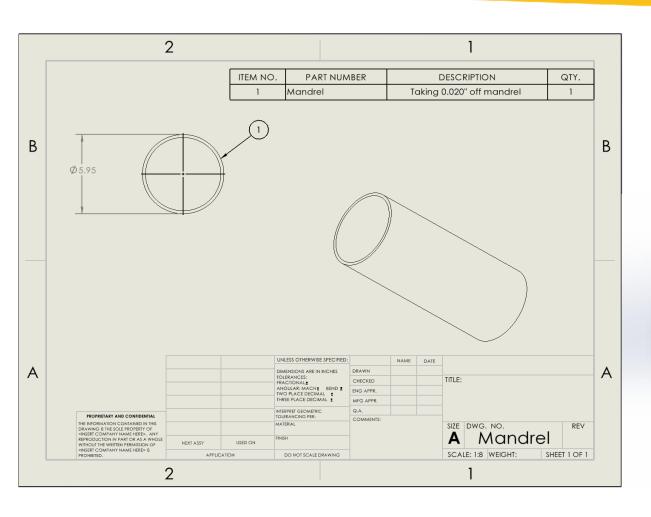

Project Description (Update)

- Level 3 Rocket Launch (September 2025)
 - Remanufacturing carbon fiber couplers
 - Ordering the motor and Recovery System
 - Implementing a hot separation system with air vent holes for stage separation
- Magnetic Separation System Development
 - (Goal) Final design by the end of the semester with a rough prototype
 - Potential implementation in the November 2025 launch

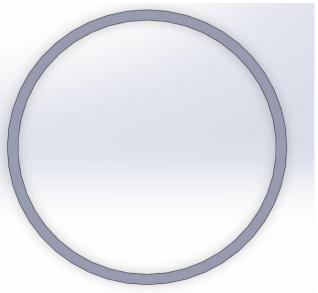

Topic 2: Hot Separation


- Six exhaust vents need to be manufactured for heat transfer.
- The Images show the placement of some of the exhaust vents.
- The exhaust vents will be 0.25-inch diameter holes
- All six will be equal spacing between and concentric with the center.

Topic 2: Hot Separation



- Additionally, the material for the booster separation tube will require modifications
- Currently it is aluminum with a hole in the center.
- The team plans to fabricate a solid plate over it that will be constrained by the bolts shown here.



• The necessary material is currently unknown and will be discussed later in the presentation.

Topic 2: Mandrel Tubing

- Mandrel tubing is being reduce from 5.98" to 5.95"
- About 0.030" will be taken off from aluminum tubing. The new diameter will be used to refabricate the fiberglass couplers.

QFD

										,			
			Engineering Requirements										
Customer Needs	Customer Weights	Low Weight	Total Drag Force	Thrust Force	Release Mechanism	Magnetic Fields Test	Testing	Altitude	Velocity	1 - Weak	3 - Moderate	9 - Strong	Benchmark Competitors
Reusability	3	6	0	3	9	0	0	0	0	Α	В	С	ark
Functionality	5	0	0	6	9	9	0		3	3	В	AC	TH:
Magnets	5	6	6	6	9	9			0)			sence
Two-Stage Separation	5	6	9	9	9	9			0)		ABC	ш
Stability	3	9	9	9	0	0	3	0	9)	AB	С	
Faster than Mach 1	4	9	6	9	0	0	3	6	9)		ABC	
30,000 ft altitude	5	6	6	9	0	0	3		9)		ABC	
Test Launch	4	0	0	0	0	9	9	9	9)			
Actual Launch	5	9	0	0	0	9	9	9	9)			
Technical Requirement Units		N	N	N	lbs	Yes	Yes	ft	Mach				
Technical Requirement Targets		445	<1000	4200	860	Yes	Yes	30000 - 50,000	2<				
Absolute Technical Importance		216	156	222	162	216	207	195	204				
Relative Technical Importance		2	8	1	7	2	4	6	5				
ATI & RTI													

Separation Types

A Mechanical Separation B Pyrotechnic Separation

one-time use/ breaks explosive/ propellant C Aerodynamic Separation drag (space shuttle used)

9 = Strong

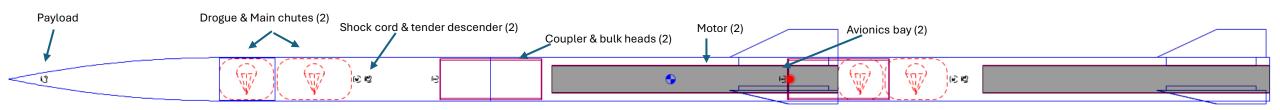
3 = Moderate

1 = Weak

Blank = No Relationship

QFD CR/ER Description

Customer Requirements (CRs)

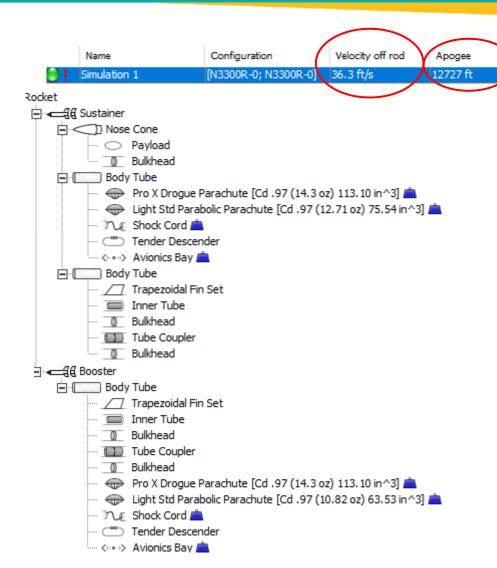

- Reusability: Designed for multiple launches
- Functionality: Ensures the separation system works effectively
- Magnets: Incorporates necessary magnetic components
- Two-Stage Separation: Supports proper separation of both rocket stages
- Stability: Ensures overall system integrity
- Mach 1+ Speed: Confirms the rocket exceeds Mach 1
- 30,000 ft Altitude: Ensures a minimum altitude of 30,000 ft
- Launches: September launch to test hot separation and November launch for Mag. Sep

Engineering Requirements (ERs) & Target Values

- Low Weight: Must be within the allowable range for launch feasibility
- Drag Force: Needs to be accurately calculated through aerodynamic analysis to assess its impact on separation
- Thrust Force: Must be sufficient to launch both rocket stages successfully
- Magnetic Force: Should provide enough strength to hold the two stages together until separation is triggered
- Spring Force: Needs to complement the magnetic separation system to ensure safe and effective stage disengagement
- Magnetic Fields: Must not interfere with the rocket's onboard computer system or other critical components.
- Testing: All test results from Rasaero simulations must align with real-world launch data
- Altitude: The rocket must reach a minimum of 30,000 feet.
- Velocity: The rocket should exceed Mach 1 speed

Bob's OpenRocket Analysis

- All components of rocket are within simulation
- Both stages combined have a cal rating of 2.80 (according to NASA, the ideal margin is 1.5-2.0 & 3.0 is considered over-stable) [1]
- Sustainer has a cal rating of 1.66
- Payload is 19 pounds *subject to change*
- CG=95.132[in] from the nose (using CG found in OpenRocket simulation to input CG into RASAero simulation)


Bob's OpenRocket Analysis (cont.)

Velocity at deploy

1351 ft/s

Optimum delay

28.1 s

Concerns with velocity off rod, apogee,
 Mach number, & velocity at deployment

Max. velocity

1364 ft/s

 Meeting with potential L3 advisor on 4/01 to begin troubleshooting

Max. acceleration

326 ft/s²

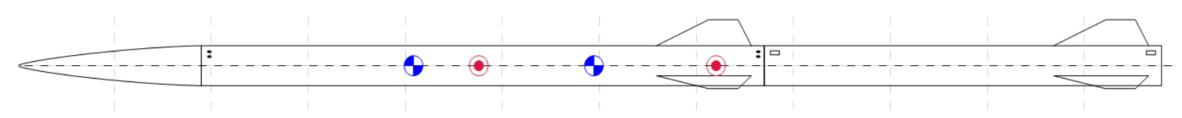
Flight time

809 s

Time to apogee

24.8 s

- Mass of components are accurate but not precise
- Precisely weighing ALL components this week


Ground hit velocity

14.8 ft/s

Emanuel's RASAero II Analysis

- Center of Gravity
 - Sustainer Motor: 65.34 (in)
 - Booster Motor: 95.1 (in)
- Flight Simulation
 - Max Alt. (w/ propellent): 23,936 (ft)
 - Max Alt. (zero propellent): 26,740 (ft)
 - Max Velocity: 1.53 Mach

 Undergoing current analysis of parachute and drogue for the rocket

Lee's Black Powder Analysis

Black Powder Charge Estimation for Rocket Separation

Author: Lee Freytes

Date: 3/27/2025

```
% Given Parameters
P_min = 15;  % Minimum pressure required (psi)
P_max = 20;  % Maximum pressure required (psi)
V_coupler = 18.46;  % Coupler volume (in³)
C = 300;  % Black powder efficiency constant (psi per gram in a sealed space)

% Calculate black powder mass (grams)
W_min = (P_min * V_coupler) / C;
W_max = (P_max * V_coupler) / C;

% Display Results
disp(['Minimum Black Powder Charge: ', num2str(W_min), ' grams']);
disp(['Maximum Black Powder Charge: ', num2str(W_max), ' grams']);
```

```
Minimum Black Powder Charge: 0.923 grams
```

Maximum Black Powder Charge: 1.2307 grams

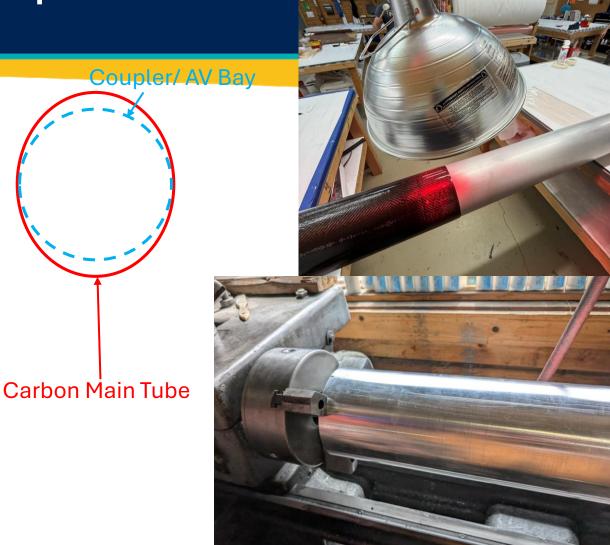
MATLAB Analysis & Tools:

- Pressure estimation for black powder charge
- Efficiency modeling using 300 psi/g constant
- Sensitivity analysis on volume and pressure variations

Key Results:

- Charge mass: 0.92 g to 1.23 g (safe range)
- Predicted pressure: 15 to 20 psi for controlled separation
- Ensures a safety margin for burn efficiency variations

Remaining ERs & CRs:


 Environmental sensitivity testing in different conditions (If needed)

Thomas' Hot Separation Update

- On Monday 03/31 I will be reaching out to the motor manufactures
- The goal is to gather information on the motor nozzle.
 - Material, Epoxy, Resin, or other coatings.
- The goal is to apply this to the booster stage.
- To protect the booster stage from the motor heat transfer.
- This will either require applying a finish or redesigning the booster stage.
- Redesign will include CAD Models, EGR Drawings, and Professional Review.

Stonn's Manufacturing Update

- Reworking the sustainer tubing.
 - Reheating tubing to about 200F where resin cured to make the tubing circular.
 - Currently it's an oval shape which makes the coupler harder to insert.
- Put aluminum tubing on the lathe to take off about 0.030"
 - 0.015" on both sides
 - Enough for about 2 plies of fiberglass which is about 0.010" thick. Adding 0.020" coupler thickness.

Adriana's Analysis

Analysis Update

- While manufacture of new coupler, ensure skin drag is low consisting with previous calculations
- Cone drag is minimal along with fin drag

Current Work & Goals

- Updating website code with information as project progresses to show to Northrop
- Test and safety procedures documentation for separation testing
- Research recovery system

About

ntroducing our team, please read a little about them and why everyone wanted to be art of this project!

through the NASA L'SPACE
Program, where I contributed to
the design of efficient drones, and
the NCAS Program, where I
conducted research on ISRU (InSitu Resource Utilization)
techniques for space exploration.
As the Project Manager for the
NRG Two-Stage Electromagnetic
Separation Supersonic Rocket, I
am excited to apply the skills I
develop to advance my career in
aerospace and aeronautical
engineering.

VACE uted to nes, and neere I RU (Incion) oration. For the agenetic bocket, I skills I areer in utical

experimental rocket, while

Lee Freytes Colón

Mechanical Engineering Student

Robert Nimcheski
My name is Robert Nimcheski and
I am studying Mechanical
Engineering. I took the route of
Mechanical Engineering because I
want to learn how machines and
mechanisms work and operate. I
am highly interested in the
Northrop Grumman Supersonic
Rocket Project because I have
always taken interest in things

FMEA: Launch System

	Launch System									
Part #	Function	Potential Failure Mode	Potential Effect(s) of Failure	Severity 1 = low 10 = High	Potential Causes and Mechanisms of Failure	Occurence 1 = No Effect 10 = Highly Likely	Current Design Controls Test	Detection 1 = Certain 10 = Uncertain	RPN 1: Good 1000: Bad	Recommended Action
1.1	Booster Igniter	Electrical or Charge	Booster motor fails to ignite.	1	Incorrect Wiring and/or insufficient amount of black powder.	4	Testing igniter wiring and consult experienced professional regarding black powder	3	12	Rewire electrical system and add additonal black powder
1.2	Sustainer Igniter	Electrical or Charge	Sustainer motor fails to ignite.	7	Incorrect Wiring and/or insufficient amount of black powder.	4	Testing igniter wiring and consult experienced professional regarding black powder	3	84	Rewire electrical system and add additonal black powder
1.3	Motor Mount(s)	Structural	Structural Integrity fails	9	Incorrect material and/or geometry.	2	Structural Analysis at stress concentration points.	1	18	Reanalyze current design and possibly redesign.
1.4	Rocket (Body)	Structural	Buckling	9	Incorrect material and/or geometry.	2	Structural Analysis at smallest diameter.	1	18	Reanalyze current design and possibly redesign.
1.5	Launch Rail	Launch	Rocket flight is unstable	9	Launch rail height is too short.	2	RASAero simulation to ensure a certain velocity is met on launch rail.	2	36	Redo RASAeor simulation and have professional review it.
1.6	Fins	Structural	Fins delaminate	2	High heat transfer to fin lamination.	8	Test launch.	8	128	Design a fin cover or apply a higher temperature resin.

FMEA: Hot Separation System

	Hot Separation System									
Part #	Function	Potential Failure Mode	Potential Effect(s) of Failure	11 = IOW	Potential Causes and Mechanisms of Failure	Occurence 1 = No Effect 10 = Highly Likely	Current Design Controls Test	Detection 1 = Certain 10 = Uncertain	RPN 1: Good 1000: Bad	Recommended Action
1.7	Booster Stage	Material	Possible structural damage to booster stage.	l	High heat transfer to booster stage.	5	Consulting a professional for material recommendations. Testing material through a launch.	5	200	Change booster material and have a professional review design.
1.8	Sustainer Igniter	Electrical or Charge	Sustainer motor fails to ignite.	7	Incorrect Wiring and/or insufficient amount of black powder.	4	Testing igniter wiring and consult experienced professional regarding black powder	3	84	Rewire electrical system and add additonal black powder
	Sustainer Motor	Force	Separation does not occur.	7	Incorrect sizing of exhaust ports (Too Large) resulting in less vertical force.	2	Consulting a professional experience in Hot Separation. Testing with a launch.	5	70	Reduce exhaust port size, redo separation analysis, and have a profession review design.
2	Exhaust Ports	Geometry	Possible structural damage to booster stage.	8	Incorrect sizing of exhaust ports (Too Small) resulting in high heat transfer to booster stage.	4	Consulting a professional experience in Hot Separation. Testing with a launch.	5	160	Increase exhaust port size, possibly change booster material, and have a professional review design.

FMEA: Recovery System

	Recovery System									
Part #	Function	Potential Failure Mode	Potential Effect(s) of Failure	11 = 1000	Potential Causes and Mechanisms of Failure	Occurence 1 = No Effect 10 = Highly Likely	Current Design Controls Test	Detection 1 = Certain 10 = Uncertain	RPN 1: Good 1000: Bad	Recommended Action
2.1	Altimeters	Electrical, software, or power.	Recovery system failure.		Incorrect wiring, altimiters fail, or battery has insufficient power.	2	Testing avionics before launch and applying redundancy to avionics.	6	120	Rewire electrical system and/or replace altimeters.
2.2	Parachute Depolyment	Packing, protection, and deployment.	Recovery system failure.		Incorrect packing, parachute was not protected from black powder, or failed to deploy.	4	Practicing pack procedure and testing parachute deployment.	2	80	Review parachute packing procedure, analyze wether parachutes were damaged or obstructed during deployment.
	Parachute Force	Lift Force	High Descent rate, possible structural damage.		Incorrect parachute sizing.	2	RASAero Simulation and professional consultation.	2	28	Redo RASAero simulation, apply a factor of safety to parachute size, and professional review.
2.4	Decender	Electrical and/or charge.	Main chute deployment failure, high structural damage.		Incorrect wiring and/or insufficient amount of black powder.	4	Professional review on design and possible testing if applicable.	4	144	Review wiring and black powder amount, and redo testing.
2.5	Shock Coord Snaps	Material.	Recovery system failure.	10	Material strength is lower than initial impulse force.	2	impulse analysis.	2	40	Get stronger shock coord
2.6	GPS	Electrical, software, or power.	Rocket trajectory (x,y) is unknown.	6	Incorrect wiring, GPS fails, or battery has insufficient power.	2	Testing GPS before launch.	5	60	Review electrical system, possibly buy new GPS.

Black Powder Testing

Test Procedures

Preparation:

- o Fill cap with a specific amount of black powder
- Insert E-Match into black powder
- Seal black powder cap with multiple strips of tape

Assembly:

- Pack recovery and other components into the rocket
- Secure first stage to prevent movement
- Connect two stages with shear pins
- Connect E-Match to mechanical switch

Ignition & Data Collection:

- Proceed to a safe test area
- Ignite black powder remotely
- Measure distance between separated stages

Equipment, Resources and Space

- Testing Equipment: Black Powder, Safety Equipment/PPE, Camera, Test Stand, Data Collection System
- Rocket Components: Nose Cone, Rocket Bodies, Black Powder Charge Container, E-Match, Mechanical Switch

Avionics Testing

Test Procedures

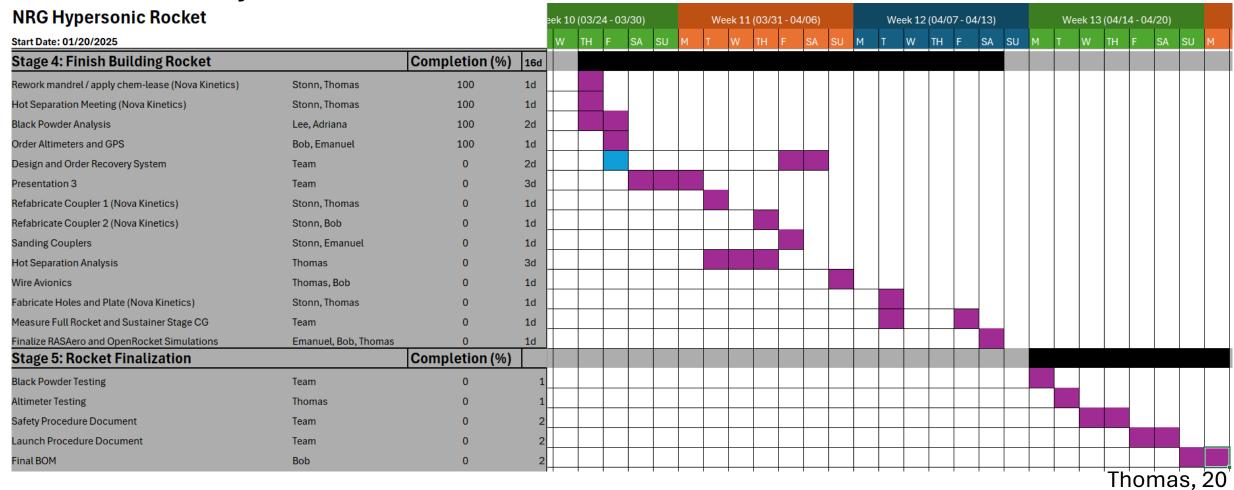
Preparation:

- Draw up wiring diagram
- Upload simulation data to Blue Raven Application

Assembly:

- Connect the battery connector to the breadboard.
- Connect the positive and negative ports of the altimeter to the breadboard
- Connect the negatively charged wires to the LED Lights
- Connect the Aft, Main, 3rd, and 4th ports to the specified LED Lights
- Connect the battery to the battery connector

Data Collection:


- Run the simulation software.
- See if the correct lights turn on at specific timing

Equipment, Resources and Space

- Testing Equipment: Bread Board, Wires, LED Lights, Battery, Battery Connector, Blue Raven Application
- Rocket Components: Altimeters, Power Perch, GPS, Ground Station

Gantt Chart

Currently on Schedule

Next Semester Schedule

- Finish redesigning new Magnetic Separation Device
- Begin Manufacturing and Testing of Mag Sep Device
- Launch Rocket in September with Hot Separation
- Analyze data from launch and make any necessary changes to rocket.
- Implement Mag Sep Device in November Launch.

Budget

	Description:	Amount [\$]:
Available funding:	NRG funding	\$6,115.13
Donations:	GoFundMe	\$700
Current Expenses:	Featherweight GPS System	-\$529.27
	Featherweight Blue-Raven Altimeters	-\$336.08
In-Progress Expenses:	N/A	
Upcoming Expenses:	2 7[ft] Drogue parachutes	-\$337.00
	16[ft] Main parachute	-\$180.00
	14[ft] Main parachute	-\$165.00
	2 50[ft] 8,600lb Braided Kevlar Shock Cords	-\$135.00
	2 30[in] Shock cord protectors	-\$37.00
	L3 Tender descender	-\$45.00
	4 Parachute bags	TBD
	4 Quick connects	TBD
	Hot separation materials	TBD
Net Balance:		\$5,949.78

- N2220 ----> N3300R
- L3 expert will confirm upcoming expenses
- Upcoming Panda Express fundraiser
- GPS system has arrived
- Still waiting on altimeters

Next Steps

- Manufacture Couplers
- Design Recovery System Schematic
- Level 3 expert rocket review
 - RASAero, OpenRocket, Recovery System, and Hot Separation
- Order/Build Recovery System
- Mag Sep design matrix
- Mag Sep design this semester (CAD)

References

[1] NASA Student Launch, "NASA Student Launch ARW Rocketry by the Numbers," NASA, Jul. 2023. Accessed: Mar. 31, 2025. [Online]. Available: https://www.nasa.gov/wp-content/uploads/2023/09/nasa-sl-2024-arw-rocketry-by-the-numbers-508.pdf